If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x=85
We move all terms to the left:
x^2+15x-(85)=0
a = 1; b = 15; c = -85;
Δ = b2-4ac
Δ = 152-4·1·(-85)
Δ = 565
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{565}}{2*1}=\frac{-15-\sqrt{565}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{565}}{2*1}=\frac{-15+\sqrt{565}}{2} $
| 6x+11=37 | | 9(a+10)=8(a-7) | | x⁄4+x⁄14+x⁄17=71 | | 5(3x+8)=-33+13 | | 5(3x+8)=-32+13 | | 2(x—1)=-8 | | 3(-2y+-7)=-15 | | 10x+7x=146*648 | | -3a-5=4a-8-2a | | -3a-5=4a-8-24 | | 32t=-288 | | 41=-7+6x | | 4m+-2=26 | | 16t=240 | | Tx16=240 | | F(x)=10(0.75)X | | -10x+8=-62 | | -87=-6+9x | | Xx16=240 | | 19=-5-8x | | 4+3(x-5)=-7(x+11)+6 | | -10x+12(x+1)=4(3-2x) | | 1.02x=791.84 | | 13-5r=6r-6 | | 9v=99 | | 2t^2-14t+33=3 | | 12n-4=10n+19 | | 3^x+4=9^2x-1 | | -7=n-19 | | 18v=-180 | | 18v=—180 | | -22=r-2 |